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Two random aggregation models are used in demonstrating the properties of 
the random displacements rl of the center of mass of aggregating particles. It 
is found that Irll is a randomly decreasing sequence that scales with the cluster 
size (steps) s and Z~- I  IU[ oc s t/~ where D is the fractal dimension. The 
center-of-mass random walk is a consistent representation of the dynamics of 
aggregation. 
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The phenomena of random aggregation can be found in most physical 
processes that involve phase transformation, such as in the growth or 
recrystalization of crystals, etc. In all of these processes, growth can be 
modeled by the growth of a single particle initially planted at a given 
site.(1 6) This particle then grows by the addition of one particle at a time, 
subject to some given laws which determine which of the unoccupied 
perimeter sites can be occupied at each stage. Thus, the shape of the 
consequent aggregates changes as new perimeter sites are occupied one at 
a time. Until now it has been assumed that the center of mass (gravity) of 
the growing aggregates is stationary and, if not, the deviation is probably 
so insignificant and the phenomenon relatively isolated as to not relate to 
any major properties of the aggregation, particularly if a form of symmetry 
is perceived in the spatial patterns of the aggregates. The phenomenon of 
nonstationary center of mass may lead to the understanding of the 
dynamics of particle-by-particle aggregation. (4) 

In this paper, it is shown by means of computer simulations that, 
during random aggregation of particles, the center of mass of the growing 
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aggregates moves randomly with a randomly decreasing sequence of step 
lengths Iril, where ri is the center-of-mass displacement vector at the ith 
step (cluster size). The displacement lengths Iri] scale with the number  of 
steps (cluster size) and Z~= 1 rr~l oc s l/D, where D is the fractal dimension. 
Random walk models (7 lO) are based on either equal or random displace- 
ment lengths, but not on random decreasing sequence of step lengths, in 
order to arrive at a scaling relation between the net displacement of the 
random walker (Euclidean distance from the origin) xn and the number of 
steps n, so that xn oc n m .  For  an oscilating particle, the net displacement 
from an equilibrium position is a deterministic decreasing sequence of 
lengths with time. De Gennes (a~ showed that the net distance x traveled by 
a randomly walking ant on a fractal network with equal displacement 
lengths at a time scales with the time t, i.e., x oc t 1lb. If D -- 2 in two dimen- 
sions, then the diffusion process is normal; and D < 2  corresponds to 
anomalous diffusion. (11) In either case, the dynamics and hence kinetics of 
the diffusion process are characterised: in the present case, the fractal 

Fig. 1. Random aggregates of 3000 particles on a square lattice with the initial particle 
planted at the center (Eden growth model). 
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trajectory of the center of mass of the growing aggregates is generated as 
a consequence of the growth process. They have a common random and 
kinetic ancestory. 

In this paper, two growth models, Eden ~1) and diffusion-limited 
aggregation (DLA), (2~ that generate compact and open random structures 
are used to demonstrate and explore the phenomenon of random walking 
center of mass. Figure 1 shows a 3000-particle aggregate on a (192 • 192) 
square lattice produced using the Eden growth model, and Fig. 2 shows 
the consequent trajectory of the center of mass; Fig. 3 is the log-log plot 
of the total distance traveled Z~=I Iril versus the size of the cluster 
s. An approximate linear relation between logEtotaldistance] versus 
log[cluster size] can be observed in Fig. 3 for cluster size greater than 100, 
which is less than 0.5 % of the total size of the random aggregates (3000) 
under study, and the statistical nature of these aggregates suggests that 
rather than fit a straight line over the rest of the curve to obtain the expo- 
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Fig. 2. Fractal trajectory of the center of mass in the course of growth of 3000 particles on 
a square lattice (Eden growth model). 
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nent e, the average sectional variation of same should be used. (tS) The 
average values of e is 0.4891, and D~ =2.044. This is consistent with the 
expected value of the fractal dimension of aggregates generated by the 
Eden growth model. 

Figure 4 shows a 2713-particle aggregate on a (292 x 292) square lat- 
tice produced using the DLA model. Figure 5 shows the log-log plot of the 
total distance covered by the moving center of mass and the aggregate size. 
The average value of the exponent is c~ = 0.6025 and D~ = 1.6598. Figure 6 
shows the log-log plot of the random displacement lengths [ri[ versus 
cluster size s for DLA. The points of the graph of log ]r[ versus log(s) in 
Fig. 6 are relatively considerably scattered but consistently linearly decreas- 
ing, so that linear regression lines were fitted over the last 80, 70, 60, 50, 
40, 30, 20, and 10% of the entire graph in order to estimate quatitatively 
the variations of the exponent 3. In the range 100<s<1900, ~_  
-0.4099 ___ 0.01 and for s > 1900, ~ increases from -0.3819 to -0.2335 up 
to the last 26% of the total cluster size and beyond which the degree of 
scatter of the points of the graph does not justify further approximation by 
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a linear regression fit. This is contrary to the behavior of the "total dis- 
tance" exponent c~ of Fig. 5, which does not vary significantly over all the 
range of s in this study. For the Eden model, ~ is approximately a constant 
at -0.5091 _+0.01 up to the last 20% of the total cluster in this study. 
Also, the a exponent for the Eden model did not vary significantly over the 
entire range of s studied. This relatively detailed analysis suggests represen- 
tations of the form [~2+ (X2-]1/2 ,~ 0.707 for the Eden growth model and for 
the DLA model, [~2 + :~2] 2/2 ,,~ 0.729 in the range 100 < s < 1900. Figure 7 
shows the log-log plot of the net displacement length x versus cluster size 
for DLA and the Eden growth model. Figure 8 shows the log-log plots of 
the ratio of the net and the total displacement length L versus the cluster 
size for the DLA and the Eden growth models. 

Analogously, the random-walking process of the center of mass during 
aggregation provides the basis of the equilibrium dynamics of the system so 

L 

Fig. 4. Random aggregates of 2713 particles on a square lattice with the initial particle 
planted at the center (DLA). 
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Fig. 5. 
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Log-log graph of total distance traveled by the center of mass versus cluster size s 
(DLA). 
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Fig. 6. Log-log graph of the center-of-mass displacement length Irl versus cluster size s 
(DLA). 
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of the center-of-mass net distance from the origin versus cluster 
size s (DLA and Eden). 

that one is apt to argue, for instance, that the random-walking process 
(hence the time scale) of the particles prior to sticking in the case of the 
DLA may not be uniquely associated with the equilibrium dynamics of the 
aggregation. In the steady state, the flux of walkers from far away is con- 
stant (~3) and growth proceeds by the addition of new particles so that the 
equilibrium dynamics of aggregation is determined by the relationships 
between the cluster size and the decreasing sequence of displacement 
lengths analogous to the displacement versus time relations encountered in 
oscillators, (14) so that the exponent associated with Fig. 6 is proportional to 
the damping. The random displacement Jril of the center of mass with each 
addition of new particle is related to the change in the energy of the system 
so that the net distance is proportional to net energy change or flow. Thus, 
Figs. 6-8 are consistent representations of the dynamics of the systems. 

The ratio L can be used to characterise the dynamics of random 
aggregation (Fig. 8): For the Eden growth model, the log-log plot of L 
versus s is an oscillating decreasing sequence whose local maxima or 
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Fig. 8. Log-log graphs of the ratio of the net distance and the total distance of the center 
of mass versus the cluster size s (DLA and Eden). 

minima are linear functions of the cluster size over a limited range s ~< 129; 
the scaling exponent is about - 0 3 0 6 1 .  Beyond s = 129, L asymptotically 
approaches a constant value rather like a randomly decaying noise 
signal (14) up to the range of cluster size investigated in this study, s ~- 3000. 
The critical cluster size, s ~- 129, corresponds to the least net displacement 
length x of the center of mass, i.e., the least minima of the net change in 
energy of the system (Fig. 7). It will be interesting to investigate quan- 
titatively the large-cluster-size (s ~- 10 6) behavior of L in the Eden model, 
but the disk storage space available to us at present cannot accommodate 
large quantities of data from such a large-scale simulation experiment 
[present work was performed on a multi-user-shared IBM-4341 computer 
model 2 (1 Mips)].  For the DLA, the log-log graph of L versus s can be 
approximated by three linear regions (or nonlinear oscillatory behavior) up 
to the critical cluster size of about 1585, beyond which the limited cluster 
size generated in this study does not allow for larger cluster description and 
future independent study would be useful, but from the point of view of 
minimization of energy, it will not be unlikely that L may not change very 
significantly from a statistical constant at large s. In general, the net change 
in the energy of an aggregating system is at the least minima at the critical 
cluste/" size. The work of Meakin et  al. ~15) on a large DLA cluster, s -~ 10 6, 
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suggests that beyond a cluster size of 1000, the exponent describing the 
length and width of the four major arms vary continuously with s, so that 
more useful information can be derived from the physics of the 
phenomenon of random walking center of mass. Finally, as in diffusion 
processes where D~=2 corresponds to normal diffusion and D~<2 
corresponds to anomalous diffusion, the exponent ~ also describes the 
damping process wherein I~1= 0.5 corresponds to normal (linear) damping 
and I~l < 0.5 corresponds to anomalous (nonlinear) damping. 

In summary, the random walking process of the center of mass of 
aggregating particles consists of randomly decreasing sequence of steps Iri[ 
that scale with the aggregate size s and ~2~= 1 lri[ oc s 1/z~, where D is the 
fractal dimension; fril--*0 as s ~  ~ and Z~=I [r~l --* constant value. The 
least net displacement length occurs at a critical cluster size which 
corresponds to the least minima of the net change in the energy of the 
system. The random-walking process of the center of mass during aggrega- 
tion provides consistent quantitative representations of the dynamics of the 
system. 

Finally, the result Z~: 1 [riI oc S lID can be derived on the basis of what 
is already known about the growth of fractal aggregates. The mean deposi- 
tion distance measured from the center of mass is given by IRil ~ s  */D, and 
from this it follows that the mean displacement of the center of mass is 
given by lri[ ~ s  ~l/D-11 (for sufficiently large s values); and from this, it 
follows immediately that Z~= 1 Iri] oc sl/s 

Above all, the present method of determining the fractal dimension of 
random aggregates is significant because it demonstrates unambiguously 
that the fractal dimension is not merely a geometric parameter, but, like 
the diffusion coefficient, it is also a kinetic parameter. 
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